
NASA / TMm2002-211199 AIAA-2001-5107

Embedded Web Technology: Applying World

Wide Web Standards to Embedded Systems

Joseph G. Ponyik and David W. York
Glenn Research Center, Cleveland, Ohio

March 2002

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the

NASA STI Database, the largest collection of

aeronautical and space science STI in the world.

The Program Office is also NASA's institutional

mechanism for disseminating the results of its

research and development activities. These results

are published by NASA in the NASA STI Report

Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA programs and include extensive data

or theoretical analysis. Includes compilations

of significant scientific and technical data and

information deemed to be of continuing

reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript

length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to NASA's
mission.

Specialized services that complement the STI

Program Office's diverse offerings include

creating custom thesauri, building customized

data bases, organizing and publishing research

results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at http.'//www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at 301-621-0134

• Telephone the NASA Access Help Desk at
301-621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076

NASA/TMn2002-211199 AIAA-2001-5107

Embedded Web Technology: Applying World

Wide Web Standards to Embedded Systems

Joseph G. Ponyik and David W. York
Glenn Research Center, Cleveland, Ohio

Prepared for the

International Space Station Utilization--2001

sponsored by the American Institute of Aeronautics and Astronautics

Cape Canaveral, Florida, October 15-18, 2001

National Aeronautics and

Space Administration

Glenn Research Center

March 2002

Trade names or manufacturers' names are used in this report for
identification only. This usage does not constitute an official

endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076

Available from

National Technical Information Service

5285 Port Royal Road
Springfield, VA 22100

Available electronically at http://gltrs.grc.nas_t.gov/GLTRS

EMBEDDED WEB TECHNOLOGY: APPLYING WORLD WIDE WEB STANDARDS
TO EMBEDDED SYSTEMS

Joseph G. Ponyik and David W. York
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

ABSTRAC F

Embedded Systems have traditionally' been

developed in a highly customized manner. The user
interface hardware and software along with the
interface to the embedded system are typically unique

to the system for which they are buih, resulting in extra
cost to the system in terms of development time and
maintenance effort.

World Wide Web standards have been developed

in the passed ten years with the goal of allowing servers
and clients to interoperate seamlessly. The client and

server systems can consist of differing hardware and

software platforms but the World Wide Web standards
allow them to interface without knowing about the
details of system at the other end of the interface.

Embedded Web Technology is the merging of

Embedded Systems with the World Wide Web.
Embedded Web Technology' decreases the cost of

developing and maintaining the user interface by

allowing the user to interface to the embedded system
through a web browser running on a standard personal

computer. Embedded Web Technology can also be used
to simplify an Embedded System's internal network.

TERMS AND DEFINITIONS

To establish a common base of understanding, the

following definitions will be used:

Client--A logical entity that initiates a request for
data or for an action to take place. A client depends

upon the presence of an associated server to perform
requests. A client may refer to client software, client
hardware, or a combination of the two to implement a

logical client.
Server--A complementary logical entity to a

client. A server listens for client requests and services
those requests, whether the request is for data or for an

action to be performed. A server may refer to server
software, server hardware, or a combination of the two

used to implement a logical server.

Web client--A client that is designed to

communicate with servers using the Hypertext Transfer
Protocol.

Web server--A server that is designed to

communicate with clients using the Hypertext Transfer
Protocol.

EMBEDDED WEB TECHNOLOGY
INTRODUCTION

Embedded Web Technology was developed for the
Fluids and Combustion Facility (FCF_ of the

International Space Station (ISS). FCF is being

developed to perform investigations in combustion
science and fluids physics in the microgravity
environment of the ISS. One of the goals of the FCF is

to be able to perform at least 10 investigations in each

discipline per year for 10 to 15 years. In order to meet
this goal, it is important for the software to be adaptable

to changing requirements. One of the areas of concern
is the user interface software that the ISS astronauts

will use to operate the FCF. The challenge facing the
FCF software engineers is that the laptop computer that
the user interface software will operate on is supplied

by the ISS, not FCF. In the event that the ISS decides to
upgrade the laptop computer, the FCF software team

will be required to modify existing user interface code
for a new environment while still developing new code
for possibly the old laptop computer and also the new

laptop computer. The FCF software engineers are also
faced with the task of developing a system that would

accommodate unknown experiments. This scenario can
be extended to any system where the users, hardware

and applications are unknown and the system is
expected to have along life.

The FCF software engineers realized that the

World Wide Web had already solved a similar problem.
With the World Wide Web, a person uses a web

browser to request a web page from a web server. In
this scenario, the web server and the web browser

interface is independent of the hardware and software
being utilized at the other end of the interface. Despite

NASA/TM--2002-211199 1

this, the web page is successfully transmitted to the web
browser and properly displayed.

The World Wide Web is based on the Hypertext
Transfer Protocol (HTTP), the protocol used by web
servers and web browsers to communicate. The FCF

software engineers did an extensive search to find an

HTTP compliant web server that would fit the
requirements of FCF. FCF, being an embedded, real-

time system, would require the web server to be small,
operate under VxWorks ®, and still allow the system to

meet its real-time requirements. The search failed to
find such a web server.

The FCF software engineering team decided to
write their own web server and this proved successful.

The web server, known as Tempest, is HTTP
compliant. It implements two of the seven request
methods defined in the HTTP specification, GET and

HEAD. The GET method is a request by a web browser
for a file from the web server. The HEAD method only

requests header information. These two methods are the

only two required to be implemented to make a web
server HTTP compliant and also offer a degree of
security to the system by not allowing the web server to

accept a file from a web browser.
Tempest also met the other needs of FCF. It is

small, requiring less than 50K of memory in its minimal

configuration, does not take up a lot of disk space, and
has minimal impact on system performance. It is active

only during the times that a web browser is requesting a
file. It can operate at a low priority with adequate

response time for the user so that it does not interfere
with the real-time aspect of the system.

The successful implementation of Tempest made it
apparent that there are advantages to utilizing other
World Wide Web standards in an embedded system.

These standards allow embedded system projects to
take advantage of work being done by thousands of

developers, thus reducing the problems inherent in
developing and utilizing custom protocols.

The term "Embedded Web Technology" was the

name given to this merger of embedded systems with

World Wide Web Technology.

OVERVIEW OF THE WORLD WIDE WEB

The World Wide Web is a collection of protocol

standards that are controlled by the World Wide Web
Consortium ®. The protocol standards promote evolution
of the World Wide Web and ensure its interoperability,

The key protocol standard behind the World Wide
Web is the Hypertext Transfer Protocol, HTTP,

specified in RFC 2616. HTTP is "an application-level

protocol for distributed, collaborative, hypermedia
information systems." (RFC 2616).

HTTP is used to transfer information between a

web server and a web client, which is typically a web

browser such as Netscape. A typical web client request
of a service from a web server will consist of a GET

request. The web server responds to the GET request

from the web client by transmitting the requested
information, typically an electronic file.

The following is an example of the HTTP
messages that are exchanged when a web page gets
transferred from a web server to a web client. First, the

request from the client:

GET/index.html HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.7 [en] (WinNT; U)
Host: jgp6290.grc.nasa.gov

Accept: image/giL image/x-xbitmap, image/jpeg,
image/pjpeg, image/png, */*

Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1 ,*,utf-8

The first line tells the server that this client wants

to get index.html and it is following version 1.0 of the

HTTP. The second line, Connection, requests that the
connection be left open. The third line, User Agent,
describes the web client making the request. The fourth
line, Host, is the IP address of the web client. The last

four lines describe the types of messages the web client
can receive.

The response from the web server is the following:

HTTP/I.I 200 OK

Host: jgp6290/139.88.219.70

Date: Mon, 020 Aug 2001 17:27:31 GMT
Server: Tempest Java 1.2 (NASA/GRC Java Version of
Tempest)
Connection: Close

Content-Length: 293 293

Content-Type: text/html

The first line tells the web client that the web

server understands HTTP 1.1 and that the request from
the client is allowed. The second line, Host, is the IP

address of the web server. The third line, Date, time

tags the message. The fourth line, Server, identifies the
web server software that is responding to the request.
The fifth line, Connection, tells the web client that the

web server will be closing this connection upon
completion of this transaction. The sixth fine, Content-

Length, tells the web client how many characters to
expect in the file to be sent. The last fine, Content-
Type, tells the web client that the data will be in text.

After this line, there will be a blank line and then the

file requested, index.html, will be sent to the web
browser.

In the event that the web page sent to the web
client contains references to image files, applets, etc.,

NASA/TM--2002-211199 2

thewebbrowserwill makeadditionalrequeststo the
webserverfor theseresources.Eachoneof these
resourceswill requireafull transactionsimilartowhat
wasjustdescribed.

Therearemanyadditionalitemsthat canbe
includedin a transactionthataredescribedin RFC
2616.For a real-time,embeddedsystemwhere
resourcessuchas memoryare limited,it is not
necessarytoimplementtheentire,protocol.

COMPARISON OF A TYPICAL WEB SERVER

ENVIRONMENT VERSUS AN EMBEDDED,
REAL-TIME ENVIRONMENT

A typical web server runs on a computer that is

running a nonrealtime operating system. The web
server software itself tends to be large and complex and

requires a lot of memory and dist, space, on the order of
10 MB or more. The web servers are designed to run on

personal computers and general purpose workstations.
The embedded, real-time environment is much

more restricted. The system generally consists of an
embedded processor running a real-time operating

system and also running a real-time application.
Embedded systems have limit_'d memory and disk

space that is not easily extensible
The users of these two environments have different

needs of the systems. The user of the nom'ealtime

environment is usually interested in obtaining static or

slowly changing information. This information is stored
in files and retrieved by the web browser for display by
the user. The user can read the information on the

display at his own pace or pnnt it out and read it
without the aid of the browser. A user of a real-time

system, on the other hand, is interested in obtaining the
most current data from the system at regular intervals.

The user may require the capability to issue commands
to the embedded system.

PUTTING EMBEDDED SYSIEMS ON THE WEB

There are two problems thai need to be solved in
order for an embedded system to become accessible on

the World Wide Web. One is providing a user interface
that provides the real-time interaction needed by the
user in order to properly interface to the system. The

other is to give the embedded system the capability to
serve web pages over the World Wide Web.

One feature of the web browser that helped bridge
the gap between the two environments is the addition of

Java TM applets. Applets are programs that are capable
of being executed by a web browser. They are written

in the Java TM language, compiled and then stored on the
web server's computer. When a web page is transmitted
to a web browser, the web browser scans through the

web page, looking for, among other things, applet tags.

When an applet tag is found, the web browser
automalically makes another request to the web server

for the applet. The applet gets sent to the web browser
which in turn loads the Java TM Virtual Machine which

starts running the applet.
In the typical web environment, applets provide an

interface that is dynamic but usually does not interact
with the web server's computer. For security purposes,

applets are very restricted in what the3' can do in a web
browser environment. It is possible to bypass these

restrictions with security certificates if they are an

impedirnent.
One capability an applet has by default is the

ability to communicate back to the computer that served
it to the web browser. This comnmnication can be

accomplished with basic socket technology, Java's TM

Remote Method Invocation (RMI), Common Object

Request Broker Architecture (CORBA ®) technology, or

other protocols. RMI is a communication technology
specific to Java TM that allows networked Java TM

programs to interface in a platform independent
manner. CORBA ®. developed by the Object

Management GroupTSL is a technology that allows

networked programs to communicate in a common
manner that is independent of the underlying hardware,

operating system or language. With this capability, it is
possible to develop an applet that can interact

dynamically with an embedded, real-time system and,
thus, let the web browser provide a user interface that
meets the needs of the user.

On the embedded system side, the problem is

providing the capability to be a web server without
overburdening the system with all of the functionality

specified in the HTTP specification. The embedded
system software still needs to be able to perform real-
time command and control. This problem was solved

by the development of Tempest.

TEMPEST FEATURES

The Tempest software, which was written by
software engineers at the NASA Glenn Research Center
in Cleveland, Ohio, is a web server written specifically

for embedded, real-time systems. Tempest was
originally written for the VxWorks ® operating system

from Wind Rivers Systems, Inc. and then ported to the
Java TM language so that it can run on any operating

system that has a Java TM Virtual Machine.
Tempest requires fewer memory resources than

web servers written for the typical web server

environment. Memory requirements are under 100 KB,
depending on how it is configured. The amount of disk

space is also under 100 KB with additional space
needed for the files that make up the web pages, images

and applets. Since Tempest is not intended to operate
as a general purpose web server, it is not necessary to

NASA/TM--2002-211199 3

implementthe entireHTTPspecification.Only the
GETandHEADrequestmethodsfrom theHTTP
specificationareimplemented.Methodsthatallowa
webbrowserto write to the web serverare not
implemented.TheresponsesgeneratedbyTempestare
alsolimitedto thosethatanembeddedsystemwould
need.

Tempestcanalsoberunata lowerprioritythan
otherapplicationsoftwarerunningin theembedded
system.Requestsfromwebbrowserareverybriefso
Tempestcanservewebpagesandotherresourcesatan
acceptablespeedwithouthavinganimpactonsystem
performance.

Anoptionalcapabilityrequirestheusertohavean
identificationandpasswordin orderto gainaccessto
thesystem.Thisprovidesalimitedlevelof securityto
thesystem.Othersecurityfeaturessuchasfirewalisand
virtualprivatenetworkscanbeaddedwithoutchanging
theembeddedsystem.It is mucheasierto havethe
securityfeaturesaddedonasseparateentitiesrather
thanbuilt into thesystem.Thisallowsfor easier
upgradesto thesecuritysystemanddecouplesthe
securityfromtheembeddedsystem.

TheuserI.D.'sandpasswordsarestoredin an
externalfile. Newuserscanbeaddedto thesystem
withouthavingtorecompileTempest.

A configuration file that allows Tempest to
associate a user with a specific image file is another

feature. This allows a user to set up the system so that
when a remote user gains access to the embedded
system, the web page can be customized to that user on

the fly by displaying an image file created for that
specific user.

Tempest also has configuration files that allow the
user to specify which remote clients have access to the

embedded system. Tempest utilizes a configuration file
to maintain a list of MIME types, used when

responding to a request to assist the web browser in
determining the type of data is being received.

All of the configuration files are read in by
Tempest when it starts up. Tempest first reads in a file
called tempest.sys that contains a list of the

configuration files. Updates to any of the configuration
files require the system to be restarted before the
changes take effect.

Web browsers are denied access to any file with a

".sys" extension. If the configuration files use this
extension, it is not possible for the person using the web

browser to have them displayed.
Tempest will not process any request that contains

"..". The ".." (double dot) is used on most computer

systems to refer to the parent directory on the disk. By
not allowing this, it is not possible for remote users to

snoop around the system.
Tempest has a feature known as Server Side

Includes (SSI). SSI is the ability of the web server to

dynamically alter a web page at the time of request.
Tempest accomplishes this by reading through any file
the has an extension of ".sht", ".shtm" or ".shtml" and

searching for <Tempest> tags. These tags are a unique
feature of Tempest. When Tempest encounters one of

these tags, it processes the contents of the tag and
substitutes the tag with the result of the processing.

One of the tags is <Tempest image>. When this tag
is utilized in combination with the user I.D. and

password, Tempest is able to associate the user to an

image file and substitute in new html that will contain a

tag to an image file specific to that user. The images.sys
and users.sys configuration files need to be coordinated
for this to work.

The other tag is <Tempest execute=somecmd
param>. This tag causes Tempest to execute the

command specified in commands.sys that corresponds
to somecmd. The parameters to the command are

passed to the command. The resultant output from
executing the command is inserted into the web page.

Error messages are displayed if somecmd is not found
in commands.sys or the corresponding command is not
found.

The commands may be either commands that are

built into the operating system or conunands written by
the developing team. This feature can be very useful
during the development stage as a debugging aid. The
output from various commands made to the embedded

system can be displayed in a web page. For example,
task information, network statistics, etc.. can be

retrieved in real-time and be monitored from anywhere
by system engineers.

The following is an example of how tasking
information can be displayed. Here is the text from a
file called taskshow2.shtml:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML
3.2//EN">

<HTML>
<HEAD>

<TITLE>VxWorks Task Information</TITLE>

<META HTTP-EQUIV="Author"

CONTENT="Joseph. G. Ponyik">

<META HTTP-EQUIV="ReplyTo"
CONTENT="Joseph.G.Ponyik @grc.nasa.gov">

</HEAD>

<BODY BGCOLOR="Aqua" TEXT="Black"

LINK="Blue" ALINK="Red" VLINK="Purple" >
<HI ALIGN=CENTER>VxWorks Operating

System Task Information</H 1>

<P><PRE>
<TEMPEST EXECUTE=task 0 2>
</PRE></P>

<HR WIDTH="50%">

NASA/TM--2002-211199 4

<P><I>VxWorks</I>®:isaregisteredtrademark
of<AHREF="http://www.wrs.com">WindRi
verSystems,Inc.</P>
</BODY>
</HTML>

Whenthis file is requestedby a webbrowser,
Tempestwill scanthefileandfindthelinethatreads
<TEMPESTEXECUTE=task0 2>. Tempest will then
match "task" against the contents of commands.sys.
Since this is a VxWorks ®implementation, Tempest will
execute the taskShow command with the first two

parameters being 0 and 2. Tempest will then replace the
line with the results of taskShow. The resultant output
in a web browser will be similar to:

VxWorks ® Operating System Task Information

THE RESULTING IMPLEMENTATION

Utilizing Tempest, it is now possible to have an
embedded, real-time system appear as a node on the
World Wide Web. To the remote user, the embedded

system appears as a World Wide Web node. The remote
user simply needs a computer with a web browser

capable of running a Java TM applet. The remote user
only needs to enter the uniform resource locator (URL)
of the embedded system into the browser.

The embedded system needs to be up and running.

Minimally, it needs to have Tempest running and an

application to interface to the system and handle
requests from the user interface.

The web browser sends an HTTP message to the

embedded system, requesting the web page. If the user
needs to enter a user I.D. and password, Tempest

NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY

...

tExcTask excTask 3e8a70 0 PEND 7b7fe 3e89cc 0 0

tLogTask _logTask 3e615c 0 PEND 7b7fe 3e60b4 0 0

tShell shell 3adelc 1 PEND 597f4 3adacc ic0001 0

tTelnetd -telnetd 3c25c8 2 PEND 597f4 3c24dc 0 0

tWdbTask 58802 3af23c 3 PEND 597f4 3af0d8 0 0

tScsiTask _scsiMgr 3e31c8 5 PEND 597f4 3e315c 0 0

tNetTask netTask 3dda6c 50 PEND 597f4 3ddal4 0 0

tFtpdTask _ftpdTas9 3bfb70 55 PEND 597f4 3bfa8c 0 0

tTftpdTask _tftpdTa_k 3bcgb8 55 PEND 597f4 3bc260 0 0

mon_tempestfb06e 392940 60 DELAY 2cafa 3928fc 0 5

http2 f9a5a 39917c 75 DELAY 2cafa 398dd4 ic0001 1

t7 taskSho_ 37d0f0 76 READY 2f12e 37c360 0 0

tPortmapd _portmap4! 3ci09c i00 PEND 597f4 3c0f54 16 0

tempest f9a5a 38b3a8 i00 PEND 597f4 38b2a4 0 0

VxWorks ®is a registend trademark of Wind River Systems, Inc.

The Java TM version of Temp,:st has features similar
to the VxWorks ® version. All of the configuration files

except for commands.sys will work with both versions.
Commands.sys needs to be modified to include
commands that will work on the platform that Tempest

will be operating on. The <Tempest execute> tag also
includes a Wait=truelfalselyeslno parameter and a

Message="some message" parameter. The Wait
parameter indicates if Tempest should wait (yes or true)
for the command to finish execution. The Message will

be inserted into the web page if Wait is false or no.
The Java TM version of Tempest also includes a tag

to allow Tempest to call another Java TM class external
to Tempest and insert the resultant output into the web

page. The format is <Tempest Object=o Method=m
Args=a> where o is the class to be run, m is the method

to call and a are the arguments to be supplied in the
method call.

responds with a request for the user to be authenticated.
Once the user is authorized, Tempest retrieves the web

page from local storage. If the file has an extension of
".sht", "'.shtnf', or ".shtml", Tempest reads through the

file and processes any Tempest tags When this step is
complete, the web page is delivered to the web browser.

The web browser displays the web page and also

requests any additional resources from the embedded
system. These resources may include images and an

applet. When the applet gets sent to the browser, the
browser starts up its Java TM Virtual Machine which

starts up the applet.
The applet establishes a connection back to the

embedded system, utilizing a different TCP port form

the one being used by Tempest, which is typically 80.
While the connection is being established, the applet

also begins the user interface. Since Java TM supports
multitasking, the applet should be designed so that the

NASA/TM--2002-211199 5

userinterfacescreensrunin a separatetaskfromthe
interfaceto the embeddedsystem.This gives a
smootherrunninginterfaceandalsomakesit easierto
recoverfromcommunicationdropswithoutlockingthe
userout.

By takingadvantageof theCORBA®technology,
moreflexibility is addedto the system.CORBA®
providesan interfacethat is independentof the
underlyinghardwareplatform,operatingsystemand
implementinglanguage.Futureupgradesto the
embeddedsystemorthewebbrowserwillbeeasierto
implementsincethechangewill betransparentto the
otherendoftheinterface.

OTHERADVANTAGES

In addition to the above features, utilizing
Embedded Web Technology also provides an added

security feature. Since the web browser does not store
the applet permanently, the user interface software is
not accessible to unauthorized users once the web

browser is turned off. It is possible to configure present
day web browsers to eliminate the cache so that the

applet gets deleted.
User interface software upgrades are simpler with

Embedded Web Technology. Without Embedded Web
Technology, the user of the real-time system also needs

to have the user interface software stored locally. The
result is that the user is restricted to using only the

computer that has the user interface software loaded
and upgrades to the software can be more difficult to

obtain. The updates require the user to find out about
the upgrade and then a process needs to be put in place
to deliver the upgraded software to the user. The

upgraded software may also need to be capable of
running on vffrious platforms, making upgrades more

difficult for the developer.
With Embedded Web Technology, the user

interface software is stored in the embedded system and
delivered to the user when it is needed. When the user

interface software is upgraded, it only needs to be

stored in the embedded system. The user gets the new
software the next time they access the system.

Tempest also provides the capability to provide
output to the remote user in any format the system

designer desires. Although the Tempest tag is typically
embedded into a web page that is html, it is possible to
set up a file that consists of only a Tempest tag calling a

local command that outputs something other than html,
such as XML. As an example, Tempest could be used

to feed real-time data into a database using XML.

SUMMARY

Embedded Web Technology provides for the
development of an embedded, real-time system that

appears to the users of the system as a node on the
World Wide Web. This capability provides for great
savings by eliminating the need to develop and

distribute user interface software that is platform
specific and somewhat cumbersome to configuration

manage.
Tempest software is a small, flexible web server

that makes it easy to interface to embedded systems. It
also has the potential to be an aid in debugging systems.

Tempest workshops have been held for customers

in the private sector. Customer remote data acquisition
and control applications include medical, tele-

communications, aerospace, factory automation,
instrumentation, automotive, building management and
education.

Tempest is available from the NASA Glenn

Research Center by contacting the Commercial
Technology Office at 216--433-3484.

REFERENCES

RFC 2616: Hypertext Transfer Protocol----HTTP/l. 1,
http://www, w3.org/Protocols/rfc2616/rfc2616, html

World Wide Web Consortium®---http://www.w3.orff

XML---http://www.w3.org/XML/

CORBA ® and Object Management Group TM---

http://www.omg.org/

JavaTUt---http://java.sun.com/

NASA/TM----2002-211199 6

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORTTYPE AND DATES COVERED

March 2002 Technical Memorandum

4. TITLE ANDSUBTITLE 5. FUNDINGNUMBERS

Embedded Web Technology: Applying World Wide Web Standards

to Embedded Systems

6. AUTHOR(S)

Joseph G. Ponyik and David W. York

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAME(S)AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

WU-398-20-(O-00

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-13039

!10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM--2002-211199

AIAA-2001-5107

11. SUPPLEMENTARY NOTES

Prepared for the International Space Station Utilization--2001 sponsored by the American Institute of Aeronautics and

Astronautics, Cape Canaveral, Florida, October 15-18, 2001. Responsible person, Joseph G. Ponyik, organization code
7750, 216-433-8592.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category: 62 Distribution: Nonstandard

Available electronically at htto://_ltrs._rc.na.sa._ov/GLTRS

This _aublication is available from the NASA Center for AeroSpace Information. 301--621-0390.

12b. DISTRIBUTIONCODE

13. ABSTRACT(Maximum 200 words)

Embedded Systems have traditionally been developed in a highly customized manner. The user interface hardware and

software along with the interface to the embedded system are typically unique to the system for which they are built,

resulting in extra cost to the system in terms of development time and maintenance effort. World Wide Web standards have

been developed in the passed ten years with the goal of allowing servers and clients to interoperate seamlessly. The client

and server systems can consist of differing hardware and software platforms but the World Wide Web standards allow

them to interface without knowing about the details of system at the other end of the interface. Embedded Web Technol-

ogy is the merging of Embedded Systems with the World Wide Web. Embedded Web Technology decreases the cost of

developing and maintaining the user interface by allowing the user to interface to the embedded system through a web

browser running on a standard personal computer. Embedded Web Technology can also be used to simplify an Embedded

System's internal network.

14. SUBJECTTERMS

Embedded systems; Real-time systems; Web server; Tempest

17. SECURITYCLASSIFICATION
OF REPORT

Unclassified

18. SECURITYCLASSIFICATION
OFTHIS PAGE

Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

12
16. PRICECODE

19. SECURITYCLASSIFICATION 20. LIMITATIONOFABSTRACT
OFABSTRACT

Unclassified

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18

298-102

